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Energy losses of ICE

Improving thermal efficiency of ICEs

Fuel Economy Improvement＝Loss reduction
All technologies for improving fuel economy must overcome these seven controlling 
factors.
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Gasoline engine and diesel engine will look similar in the future.
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Improving thermal efficiency of ICEs
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After 2011 big earthquake 
in Japan
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Specific CO2 emissions of electric power generation
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C car average
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Electric power consumption of C car in the real world:  21.2kWh/100km.
Fuel consumption of Mazda 2L C car in the real world:   5.2L/100km  
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Fuel consumption reduction target for ICE powered vehicle in real world

21.2kWh/100km

Goal of SKYACTIV engines
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Fuel consumption reduction target for ICE powered vehicle in real world

LCA considering just Li-ion Battery manufacturing
2 ton (minimum estimation ever found)CO2 for 
20kWh battery
Lifetime mileage assumed 200,000km

Mazda3  2.0L = 5.2L/100km

Target for Mazda 3 5.2L/100km 4L (3.8L-4.2L)/100km
Around 25% fuel consumption reduction required
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4.2L/100km
Target; 4L/100km

Goal of SKYACTIV engines



Comparison of well-to-wheel CO2
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1. JC08 Hot ambient temperature 25℃ air conditioner 25℃ AUTO
2. JC08 Hot ambient temperature 37℃ air conditioner 25℃ AUTO
3. JC08 Cold ambient temperature -7℃ air conditioner 25℃ AUTO

Real-world CO2 emissions (In Japan)
Evaluation condition: Weighted average of results of below 3 tests, considering 
Japanese ambient temperature distribution in a year
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Fuel economy of internal combustion engines needs to be reduced by 
approx. 26%((126-93)/126=0.26) to attain the EV-level CO2 emissions.
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Average energy consumption = JC08H 25℃－（（JC08H 25℃－JC08H 37℃）*0.2+（JC08H 25℃－JC08C -7℃）*0.3）/4

JC08 mode

Goal of SKYACTIV engines
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Gasoline engine Diesel engine

Roadmap to the goal of ICE Distance to idealFar Close
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SKYACTIV engines:  1st step
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Full load Performance

Competitors scatter band
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Improve low- and-mid end torque in spite of a high compression ratio 
and achieve superior driving
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SKYACTIV engines:  1st step
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50g/kWh

0 200 400 600 800 1000 1200 1400

BMEP（kPa)

1500rpm

D 2.0L

B 2.0L DI
lean burn

A 2.0LDI T/C

E 2.0L DI

C Downsizing

SKYACTIV-G surpasses competitors’ all new engines including 30% downsized 
engines in fuel efficiency.

BSFC
B

ra
ke

 s
pe

ci
fic

 fu
el

 
co

ns
um

pt
io

n（
g/

kW
h)

SKYACTIV-G 2.0LSKYACTIV-G 2.0L

SKYACTIV engines:  1st step 



15

SKYACTIV-G  made a large improvement in performance 
over conventional engines.
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SKYACTIV engines:  1st step 
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SKYACTIV engines:  Next step



There is room for improving thermal efficiency in the light load range:
Approx. 30% for diesel engines      Approx. 40% for gasoline engines 18

Light load： 2000rpm – IMEP290kPaWalk of efficiency improvement
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It seems possible for ICEs to attain a 25%  fuel economy improvement, which is the 
target to to attain the  EV-level CO2

Brake Specific Fuel Consumption

19

Target for 2nd step

100g/kwh

0

Target for 3rd step

200 400 600 800 1000
BMEP (kPa)

32%

40%
20%

34%

12%

30%

1st step SKYACTIV

Boosted lean-burn

Target for Mazda 3 5.2L/100km 3.8L-4.2L/100km
around 25% fuel consumption reduction required

SKYACTIV engines:  Next step

competitors
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Motor drive using electricity generated by engine = Large battery and large 
motor required

generator
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When Mazda’s next-generation engines are hybridized, small-sized motor and battery 
are sufficient enough to power engines.

Hybridization requirement on electric device capacity
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SKYACTIV engines:  Next step
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At low load , 1L boosted engine with usual CR=10 shows better BSFC than 2.5L NA, 
but at mid. and high load,  2.5L engine shows much better BSFC than 1L boosted 
engine.

Investigation results of boosted downsizing engines
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Downsizing is favorable for NEDC-mode fuel economy
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Real world fuel economy

SKYACTIV engines are better than boosted downsizing engines in the real 
world fuel economy.
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Comparison between 2L SKYACTIV and 1L and 1.4L boosted D/S

2L SKYACTIV engine can be superior to 1.4L boosted D/S engine with a cylinder 
deactivation system, and 1L 3 cylinder boosted D/S engine in all operational ranges. 
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Even 2.5L SKYACTIV engine can be superior to 1.4L 4-cylinder  boosted D/S engine 
with a cylinder deactivation system, and 1L 3 cylinder boosted D/S engine in all 
operational ranges. 

1.4L D/S    w/ cyl. Deact.

1.0L D/S

SKYACTIV 2.5L

↑ w/ cyl. Deac.                   

1.4L D/S    w/ cyl. Deact.

1.0L D/S

SKYACTIV 2.5L
↑ w/ cyl. Deac.                   

Comparison between 2.5L SKYACTIV and 1L and 1.4L boosted D/S

Investigation results of boosted downsizing engines



Base engine
（Direct Injection）

Strengthened 
piston ,con-rod, 
crankshaft, 
block, head

Turbocharger

Intercooler & piping

Boosted D/S

Electric VCT

4-2-1 exhaust

SKYACTIV-G

Cost

Boosted downsizing engines require extra expensive devices.

Investigation results of boosted downsizing engines



100g/kwh

Investigation results of boosted downsizing engines

Current V6 3.7L

V6 3.7L SKYACTIV

T/C I4 2.5L SKYACTIV

Turbocharged I4 SKYACTIV vs. NA V6 SKYACTIV

The most efficient way to downsize engines is to convert V engines to inline engines and 
downsize, while controlling knocking in the high load range with specific technologies to 
boosted engines.
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Effect of friction reduction by downsizing and cylinder number reduction

Mechanical friction reduction due to downsizing 3.7 L V6 to 2.5 L I4 is 
1.6-times greater than downsizing 3.7 L V6 to 2.5 L V6 or 3.7 L I4 to 2.5 
L I4.  As a result, fuel economy is significantly improved.

Mechanical friction reduction due to downsizing 3.7 L V6 to 2.5 L I4 is 
1.6-times greater than downsizing 3.7 L V6 to 2.5 L V6 or 3.7 L I4 to 2.5 
L I4.  As a result, fuel economy is significantly improved.

Investigation results of boosted downsizing engines



Cost comparison between NA V6 SKYACTIV and Turbocharged I4 SKYACTIV

T/C I4 SKYACTIVNA V6 NA V6 SKYACTIV

Investigation results of boosted downsizing engines

• To convert a NA V6 engine to a T/C I4 SKYACTIV engine with 4 cylinders, costs of some devices, 
such as an electric VVT, a high-pressure fuel rail and others will be halved than to convert a V6 
engine to a V6 SKYACTIV engine.

• The cost of an injector and coils will be reduced to two-thirds.
• When an inlet 4-cylinder engine is converted to a inlet 4-cylinder SKYACTIV engine, the cost of 

additional devices are unchanged.  The cost is raised due to a turbocharger.
• In the case of a 3-cylinder engine, only costs of parts for one cylinder are saved.

• To convert a NA V6 engine to a T/C I4 SKYACTIV engine with 4 cylinders, costs of some devices, 
such as an electric VVT, a high-pressure fuel rail and others will be halved than to convert a V6 
engine to a V6 SKYACTIV engine.

• The cost of an injector and coils will be reduced to two-thirds.
• When an inlet 4-cylinder engine is converted to a inlet 4-cylinder SKYACTIV engine, the cost of 

additional devices are unchanged.  The cost is raised due to a turbocharger.
• In the case of a 3-cylinder engine, only costs of parts for one cylinder are saved.



Excess air ratio vs. thermal efficiency NOx vs. excess air ratio 

Expanding Λ>2.2 is required for the compatibility of both efficiency and no NOX 
after-treatment
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Future strategy for engine displacement

Target of lean burn



2000rpm
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Future strategy for engine displacement
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Examination of fuel economy

July 2008

Averaged mileage/year is somewhere between 10,000 and 15,000 km.  
(US excluded.)

Average mileage /year

Country

Japan

United States

England

Germany

France

Vehicle age（years）

9,896

18,870

14,720

12,600

5,84

8,30

6,20

6,75

14,100 7,50

Ref.）report  from  investigative commission on c lean diesel passenger car growth・future prospect

Mileage/year (km)



1 Ford Fusion SE Hybrid 39 35 41
2 Toyota Camry Hybrid XLE 38 32 43
3 Volkswagen Passat TDI SE 37 26 51
4 Hyundai Sonata Hybrid 33 24 40
5 Mazda6 Sport 32 22 44
6 Nissan Altima 2.5 S (4-cyl.) 31 21 44
7 Honda Accord LX (4-cyl.) 30 21 40
8 Chevrolet Malibu Eco 29 20 41
9 Toyota Camry LE (4-cyl.) 27 19 41
10 Hyundai Sonata GLS 27 18 39

11 Subaru Legacy 2.5i Premium 26 18 35

12 Chevrolet Malibu 1LT 26 17 38
13 Toyota Camry XLE (V6) 26 17 37
14 Honda Accord EX-L (V6) 26 16 39

COMBI CITY HWY

Midsized cars

Real world fuel economy (US)

Fuel economy (mpg)

Consumer report 2013

Fuel economy of HEV is superior , however,…

1 Honda Civic Hybrid 40 28 50

2 Volkswagen Jetta Hybrid SE 37 29 45

3 Volkswagen Jetta TDI 34 25 45

4 Mazda3 i Touring sedan 33 23 45

5 Chevrolet Cruze Turbo 
Diesel 33 22 49

6
Mazda3 i Grand Touring 
hatchback 32 24 41

7 Toyota Corolla LE Plus 32 23 43
8 Ford Focus SE SFE 31 21 43

9 Volkswagen Jetta SE (1.8T) 30 21 39

10 Nissan Sentra SV 29 21 38
11 Honda Civic EX 29 20 40
12 Hyundai Elantra GLS 29 20 39
13 Dodge Dart Rallye 29 19 41

COMPACT CARS Overall mpg = 29 or higher

COMBI CITY HWYFuel economy (mpg)

Examination of fuel economy
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1400
1150

mpg

Mid size cars 
1400-1150=250$/year

Compact cars
1358-1121=237$/year

Mid size  conventional
Mid size  HEV

Examination of fuel economy

Fuel cost / year
assuming 19,000km /year     gasoline price; 3.8$/gallon  

Average drive cannot payoff the price increase by HEV by 
superior fuel economy 



Summary

38

• We created roadmaps toward the ideal ICE and are steadily advancing developments accordingly.

• We introduced the world’s highest compression ratio into the gasoline engines at the first step.

• We believe that our approach is more reasonable than the boosted downsizing approach from a 
perspective of real-world fuel economy and cost.

• We believe that hybrid-level fuel economy is achievable with just improving ICE technologies and 
that EV-level CO2 emissions is also achievable with improved ICE and simple hybrid technologies.

• We believe that the EV-level of well-to-wheel CO2 emissions is achievable with approx. 25% 
improvements from that of the current SKYACTIV.  Once EVs have held a large share of the market, 
tremendous amount of electricity will have to be generated.  As a result,  EVs will be unable to 
obtain benefits from the current electric price due to the electric price increase.

• We regard large engine displacement as a cost free turbocharger, and plan to maximize its 
advantage and increase engine displacement.

• If expensive technologies which only improve fuel economy are offered to our customers, they 
cannot pay off high vehicle prices.  Therefore, we continuously offer technologies together with 
additional values, such as driving pleasure.



Thank you for your attention!



ConclusionConclusion

1. Boosted downsizing engines show better BSFC at a light load.  However, large 
displacement NA engines (SKYACTIV) show the better BSFC at a mid-and-high 
load due to higher compression ratios.

2. With introduction of cylinder deactivation systems into large-displacement NA 
engines,  NA engines show better BSFC in all the operational ranges.    The 2.5L 
NA engines beat the 1 liter turbo engines in both F/E and power performance.

3. Large-displacement NA engines have demonstrated their advantages in the real 
world fuel economy over boosted D/S engines.

4. It is clear that NA engines cost less than boosted D/S engines.

5. Further drastic improvements in thermal efficiency is possible with introduction of 
lean-burn technologies.   It is easer to expand the lean burn area of large 
displacement engines.

The best direction is upsizing.



• Fossil fuel reserve production said to be more than 170 years.  
(Source:  World energy outlook 2011)

• Please assess CO2 on the well-to-wheel basis.
• Please bear in mind that establishing low CO2 electric power 

generation must come first before giving much incentives and 
prepare many electric chargers to expand EV use.  This is the same 
for FCVs (fuel cell vehicles)

• It is possible to improve ICEs to achieve the well-to-wheel CO2  
equal to that of EVs.

Drastic improvements of ICE efficiency are the most realistic way to 
improve the environment until a sustainable new energy source is 
developed. 

Additional message



The 2nd step engine  targets higher CR & leaner CAI.

Further thermal efficiency improvement 

SKYACTIV engines:  Next step
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Comparison of thermal efficiency improvement
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ICE vehicles will be able to attain the CO2 level of EVs based on mode simulation. 
Efficiency improvement for EVs is nearing its limit.  
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Goal of SKYACTIV engines



Targeted CO2 reduction level by ICE improvement

Aiming at CO2 level of  EVs by ICE improvement

※Calculated  based on Electric generation life cycle by Central Research Institute of Electric Power Industry(2010)
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SKYACTIV-G3

Goal of SKYACTIV engines
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US average level of CO2 is achievable.
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