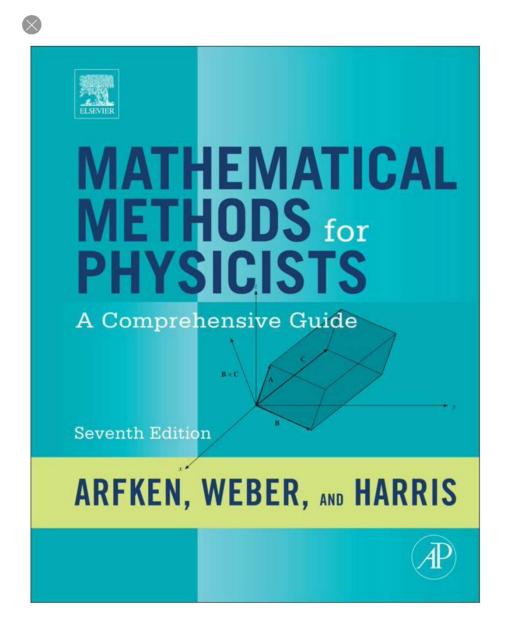
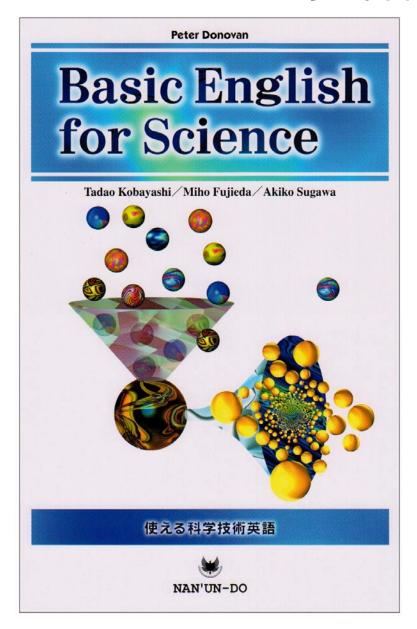
電気電子数学1 Mathematics for Electrical and Electronic Engineering 1

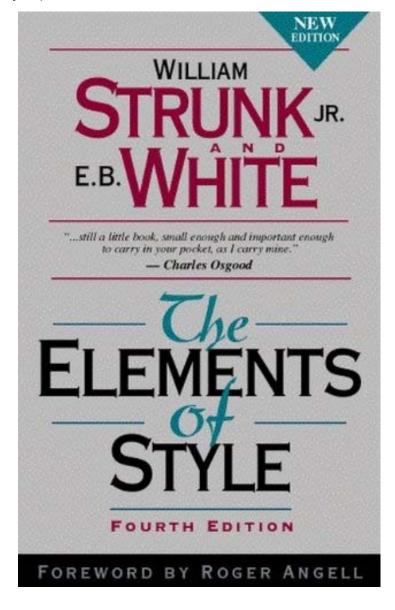
電気系2回生対象 後期金曜日1限 前半8回英語、後半6回日本語 京都大学生存圏研究所 (工学研究科電気工学専攻協力講座) 大村善治

講義の概要


- 講義の前日までに、講義ノート(手書き英文)を KULASISにアップロードする。
- 質問は、英語を原則とするが日本語も許す。
- 毎回、レポート課題を英文で出して、英語で解答させる。提出されたレポートは、TAに念入りにチェックしてもらい、出来ていないものは返却する。
- レポートは講義の始まる時にのみ受け取り、それ以外は一切受け取らない。(遅刻を減らすと同時に、講義中にレポート作成・修正の作業をさせない。)
- 教科書は指定するが、その中の演習問題をレポート課題として課して自習させるために使い、講義の中では殆ど使わない。

教科書


Mathematical Methods for Physicists

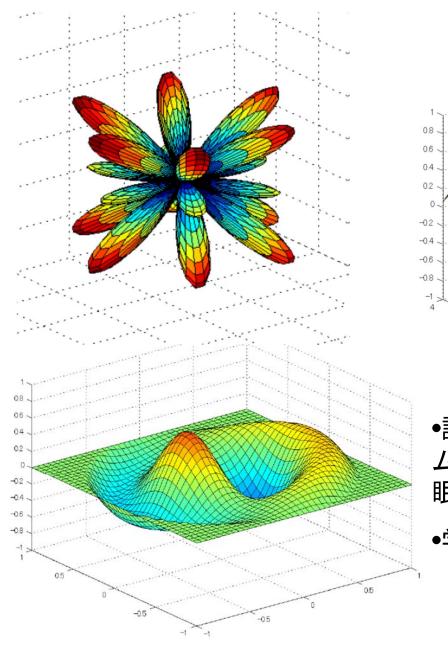

Seventh Edition, Arfken, Weber, and Harris

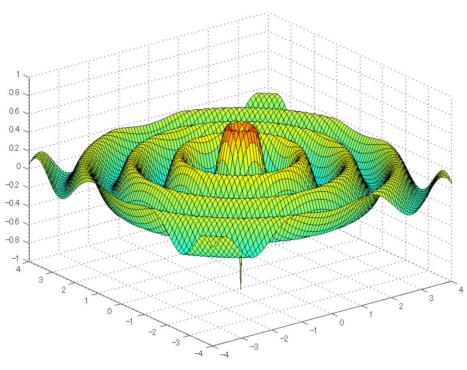
講義では kindle版の利用を推奨

参考書 (教員用)

講義ノートの例

三年前までは板書をしていたが、ノートへ書き取りながら、同時に別の話題へと移行してゆく英語を聞き取って、かつ講義内容を理解できる学生は殆どいないことを実感した。


現在は、講義の前日までに講義ノートをKULAS ISの講義資料(PDFファイル)としてアップロードする。ノートを手書きする場合は、筆記体を用いない。


§ English expressions frequently used in the lectures	
(i) Assumption	
We assume ~	
Let's assume ~	
Assuming ~	
(ii) Substitution	
substitute A with B	
Substitute B for A	
substitute B into A	
(iii) Deduction	
A leads to B	
A results in B	
B results from A	
A is rewritten as B	

earity and Nonlinearity (i) Linear ODE/PDE
$a\frac{d^2\psi}{dx^2} + b\frac{d\psi}{dx} + c\psi = 0$
Linear operator: $\mathcal{L} = a \frac{d^2}{dx^2} + b \frac{d}{dx} + C$
$\angle \beta = 0$
(ii) Nonlinear PDE nonlinear terms Ψ², ψ 3 ½
$\frac{\partial t}{\partial y} + \psi \frac{\partial x}{\partial y} + \frac{\partial x^3}{\partial y^3} = 0$
Korteveg-deVries equation (KdV equation

(iV) Basic Formulae					
+ add	addition	sum			
— subtract	subtraction	difference			
X multiply	multiplication	product			
- divide	division	quotient			
x2: x squared, x3: x cubed					
xn: x to the power of n (x to the n)					
* : fover m, da : d capital Q by dt					
(a+b): open brackets atb close brackets/atb in brackets					
(?) $M_e = 9.1 \times 10^{-31}$					
- subtract X multiply in divide x²: x square xn : X to the P in : 8 over m (a+b): open brace	Subtraction Multiplication division d, \(\chi^3 : \) Fower of n (\(\chi \) the kets atb close the	product quotient x cubed to the n) capital Q by dt			

MATLAB/Scilabによる視覚的教材の活用

- •講義時間の中程に、MATLABプログラムによる画像やアニメーションを見せる。 眠気解消を兼ねて利用すると効果的。
- •学生には無料のScilabの利用を勧める。

英語による講義の注意点

- VOA Special English の発音速度を基準にして、ゆっくり話す。
- 「Basic English for Science」、「The Elements of Style」の英語 テキストに記載されている英語表現を用いる。
- 特殊な数学表現の読み方は、同様の講義を担当している米英 の研究者に尋ねて確認する。
- 余計な言葉、"Well," "You know," "Ah…"を言わない。 (無意識に発声していることが多々あるので、時々自分の講義 を録音して、チェックする。)
- 学生がリスニングに集中できるように、私語が聞こえた時には、 "Do you have a question?"と即座に質問を発して、私語の出来ない雰囲気を作る。
- 板書は、筆記体を使わず全てブロック体で書く。
- 特殊な表現、専門用語は日本語訳を補足する。
- 学生に頻繁に質問し、英語で答える練習をさせる。

レポート課題の例

- Assignment 1: Exercise
- Assignment 2: Exercise
- Assignment 3: Write your comments in three sentences.

第1回目のレポートでのコメント:

Student A: I was afraid that I would not be able to understand this lecture, because I'm not good at listening to English speech. However, Professor Omura spoke very slowly. Thus, I've got a little confidence.

Student B: I was happy to be able to understand your speaking English. However, such easy English would not improve my English skill. Could you speak a bit faster?

Student C: It was the first time for me to study Math in English. Maybe, English will be very important in my life, so I want to make this class one of motivation of English studying. I thought English may be better to study Math than Japanese.

Student D: I'm not good at English and math. However, I want to improve my skill. So, I'll do my best in this class.